Abelianess implies quasi-affiness revisited

Michał Stronkowski

Warsaw University of Technology and Charles University

Novi Sad, August 17-21, 2009

outline

1 Old stuff

- Abelian algebras
- Affine algebras
- Quasi-affine algebras

2 New stuff

- Toolbox
- Subreducts of modules

An algebra \mathbb{A} is abelian if the diagonal $D_{\mathbb{A}} = \{(a, a) | a \in \mathbb{A}\}$ is a class of a congruence of \mathbb{A}^2 .

An algebra \mathbb{A} is abelian if the diagonal $D_{\mathbb{A}} = \{(a, a) | a \in \mathbb{A}\}$ is a class of a congruence of \mathbb{A}^2 . Equivalently, \mathbb{A} satisfies TC:

$$t(a,\underline{u}) = t(a,\underline{v}) \iff t(b,\underline{u}) = t(b,\underline{v}).$$

An algebra \mathbb{A} is abelian if the diagonal $D_{\mathbb{A}} = \{(a, a) | a \in \mathbb{A}\}$ is a class of a congruence of \mathbb{A}^2 . Equivalently, \mathbb{A} satisfies TC:

$$t(a,\underline{u}) = t(a,\underline{v}) \iff t(b,\underline{u}) = t(b,\underline{v}).$$

Examples

Modules, unary algebras.

An algebra \mathbb{A} is abelian if the diagonal $D_{\mathbb{A}} = \{(a, a) | a \in \mathbb{A}\}$ is a class of a congruence of \mathbb{A}^2 . Equivalently, \mathbb{A} satisfies TC:

$$t(a,\underline{u}) = t(a,\underline{v}) \iff t(b,\underline{u}) = t(b,\underline{v}).$$

Examples

Modules, unary algebras.

Aim

Understand abelian algebras.

 \mathbb{A} is affine if it is polynomially equivalent to a module.

 \mathbbm{A} is affine if it is polynomially equivalent to a module. Its term operations look like

$$t(x_1,\ldots,x_n)=r_1x_1+\cdots+r_nx_n+c.$$

 \mathbbm{A} is affine if it is polynomially equivalent to a module. Its term operations look like

$$t(x_1,\ldots,x_n)=r_1x_1+\cdots+r_nx_n+c.$$

Theorems

An abelian algebra $\mathbb A$ is affine provided

 \mathbbm{A} is affine if it is polynomially equivalent to a module. Its term operations look like

$$t(x_1,\ldots,x_n)=r_1x_1+\cdots+r_nx_n+c.$$

Theorems

An abelian algebra \mathbb{A} is affine provided

𝔍(𝔅) is Mal'cev (J. Smith '76, P. Gumm '79);

 \mathbbm{A} is affine if it is polynomially equivalent to a module. Its term operations look like

$$t(x_1,\ldots,x_n)=r_1x_1+\cdots+r_nx_n+c.$$

Theorems

An abelian algebra \mathbb{A} is affine provided

- $\mathcal{V}(\mathbb{A})$ is Mal'cev (J. Smith '76, P. Gumm '79);
- **2** $\mathcal{V}(\mathbb{A})$ is congruence modular (C. Herrmann '79);

 \mathbbm{A} is affine if it is polynomially equivalent to a module. Its term operations look like

$$t(x_1,\ldots,x_n)=r_1x_1+\cdots+r_nx_n+c.$$

Theorems

An abelian algebra \mathbb{A} is affine provided

- $\mathcal{V}(\mathbb{A})$ is Mal'cev (J. Smith '76, P. Gumm '79);
- **2** $\mathcal{V}(\mathbb{A})$ is congruence modular (C. Herrmann '79);
- \mathfrak{O} $\mathcal{V}(\mathbb{A})$ is locally finite and omits type $\mathbf{1}$ (D. Hobby, R. McKenzie '88).

 \mathbbm{A} is affine if it is polynomially equivalent to a module. Its term operations look like

$$t(x_1,\ldots,x_n)=r_1x_1+\cdots+r_nx_n+c.$$

Theorems

An abelian algebra \mathbb{A} is affine provided

- $\mathcal{V}(\mathbb{A})$ is Mal'cev (J. Smith '76, P. Gumm '79);
- **2** $\mathcal{V}(\mathbb{A})$ is congruence modular (C. Herrmann '79);
- \mathfrak{O} $\mathcal{V}(\mathbb{A})$ is locally finite and omits type $\mathbf{1}$ (D. Hobby, R. McKenzie '88).

What is a non locally finite generalization of Hobby-McKenzie theorem?

Recall

A non locally finite analog of omitting type ${\bf 1}$ is the satisfaction of a nontrivial idempotent Mal'cev condition,

Recall

A non locally finite analog of omitting type **1** is the satisfaction of a nontrivial idempotent Mal'cev condition, equivalently having a Taylor term.

Recall

A non locally finite analog of omitting type **1** is the satisfaction of a nontrivial idempotent Mal'cev condition, equivalently having a Taylor term.

Let
$$\mathbb{I} = \langle [0,1], \frac{x+y}{2} \rangle$$
.

Recall

A non locally finite analog of omitting type **1** is the satisfaction of a nontrivial idempotent Mal'cev condition, equivalently having a Taylor term.

Example

Let
$$\mathbb{I} = \langle [0,1], \frac{x+y}{2} \rangle$$
.

• I is abelian;

Recall

A non locally finite analog of omitting type **1** is the satisfaction of a nontrivial idempotent Mal'cev condition, equivalently having a Taylor term.

Let
$$\mathbb{I} = \langle [0,1], \frac{x+y}{2} \rangle$$
.

- I is abelian;
- I has a Taylor term;

Recall

A non locally finite analog of omitting type **1** is the satisfaction of a nontrivial idempotent Mal'cev condition, equivalently having a Taylor term.

- Let $\mathbb{I} = \langle [0,1], \frac{x+y}{2} \rangle$.
 - I is abelian;
 - I has a Taylor term;
 - I is **NOT** affine (it has a semilattice quotient);

Recall

A non locally finite analog of omitting type **1** is the satisfaction of a nontrivial idempotent Mal'cev condition, equivalently having a Taylor term.

- Let $\mathbb{I} = \langle [0,1], \frac{x+y}{2} \rangle$.
 - I is abelian;
 - I has a Taylor term;
 - I is NOT affine (it has a semilattice quotient);
 - but I is quasi-affine.

Recall

A non locally finite analog of omitting type **1** is the satisfaction of a nontrivial idempotent Mal'cev condition, equivalently having a Taylor term.

Example

- Let $\mathbb{I} = \langle [0,1], \frac{x+y}{2} \rangle$.
 - I is abelian;
 - I has a Taylor term;
 - I is NOT affine (it has a semilattice quotient);
 - but I is quasi-affine.

 (A, Ω) is a reduct of (A, Φ) if each $\omega \in \Omega$ is a term operation of (A, Φ) subreduct = subalgebra of a reduct quasi-affine algebra = subreduct of an affine algebra

A non locally finite generalization of Hobby-McKenzie theorem follows:

A non locally finite generalization of Hobby-McKenzie theorem follows:

Theorems (K. Kearnes and Á. Szendrei '98) Let \mathbb{A} be an abelian algebra.

A non locally finite generalization of Hobby-McKenzie theorem follows:

- Theorems (K. Kearnes and Á. Szendrei '98)
- Let $\mathbb A$ be an abelian algebra.
 - If $\mathcal{V}(\mathbb{A})$ satisfies nontrivial IMC, then \mathbb{A} is quasi-affine;

A non locally finite generalization of Hobby-McKenzie theorem follows:

Theorems (K. Kearnes and Á. Szendrei '98)

- Let \mathbb{A} be an abelian algebra.
 - If $\mathcal{V}(\mathbb{A})$ satisfies nontrivial IMC, then \mathbb{A} is quasi-affine;
 - If $\mathcal{V}(\mathbb{A})$ satisfies IMC that fails in semilattices, then \mathbb{A} is affine.

A non locally finite generalization of Hobby-McKenzie theorem follows:

Theorems (K. Kearnes and Á. Szendrei '98)

- Let \mathbb{A} be an abelian algebra.
 - If $\mathcal{V}(\mathbb{A})$ satisfies nontrivial IMC, then \mathbb{A} is quasi-affine;
 - If $\mathcal{V}(\mathbb{A})$ satisfies IMC that fails in semilattices, then \mathbb{A} is affine.

The proof is based on R. Quackenbush's characterization of quasi-affine algebras '85.

A non locally finite generalization of Hobby-McKenzie theorem follows:

Theorems (K. Kearnes and Á. Szendrei '98)

- Let \mathbb{A} be an abelian algebra.
 - If $\mathcal{V}(\mathbb{A})$ satisfies nontrivial IMC, then \mathbb{A} is quasi-affine;
 - If $\mathcal{V}(\mathbb{A})$ satisfies IMC that fails in semilattices, then \mathbb{A} is affine.

The proof is based on R. Quackenbush's characterization of quasi-affine algebras '85.

Today dish = a new "proof" of the first part of Kearnes-Szendrei theorem.

arity: $\Omega \to \mathbb{Z}^+$ - fixed signature

arity: $\Omega \to \mathbb{Z}^+$ - fixed signature

Attention: We assume the lack of constants.

arity: $\Omega \to \mathbb{Z}^+$ - fixed signature

Attention: We assume the lack of constants. But it is not relevant for quasi-affine representations.

arity: $\Omega \to \mathbb{Z}^+$ - fixed signature

Attention: We assume the lack of constants. But it is not relevant for quasi-affine representations.

$$\Sigma_{\Omega}$$
 - set of the cardinality $\sum_{\omega \in \Omega} \operatorname{arity}(\omega)$

arity: $\Omega \to \mathbb{Z}^+$ - fixed signature

Attention: We assume the lack of constants. But it is not relevant for quasi-affine representations.

$$\Sigma_{\Omega}$$
 - set of the cardinality $\sum_{\omega \in \Omega} \operatorname{arity}(\omega)$
 $\mathbb{N}\langle \Sigma_{\Omega} \rangle$ - non commutative semiring of polynomials with natural coefficients and with the set of indeterminants Σ_{Ω}

arity: $\Omega \to \mathbb{Z}^+$ - fixed signature

Attention: We assume the lack of constants. But it is not relevant for quasi-affine representations.

$$\Sigma_{\Omega}$$
 - set of the cardinality $\sum_{\omega \in \Omega} \operatorname{arity}(\omega)$
 $\mathbb{N}\langle \Sigma_{\Omega} \rangle$ - non commutative semiring of polynomials with natural coefficients and with the set of indeterminants Σ_{Ω}

 $F_{SM}(X)$ - semimodule over $\mathbb{N}\langle \Sigma_{\Omega} \rangle$ freely generated by X

arity: $\Omega \to \mathbb{Z}^+$ - fixed signature

Attention: We assume the lack of constants. But it is not relevant for quasi-affine representations.

$$\Sigma_{\Omega}$$
 - set of the cardinality $\sum_{\omega \in \Omega} \operatorname{arity}(\omega)$
 $\mathbb{N}\langle \Sigma_{\Omega} \rangle$ - non commutative semiring of polynomials with natural coefficients and with the set of indeterminants Σ_{Ω}

 $F_{SM}(X)$ - semimodule over $\mathbb{N}\langle \Sigma_{\Omega} \rangle$ freely generated by X

Theorem (J. Ježek '79)

Each algebra $\mathbb{A} = (A, \Omega)$ is a subreduct of $F_{SM}(A)/\theta_{\mathbb{A}}$.

arity: $\Omega \to \mathbb{Z}^+$ - fixed signature

Attention: We assume the lack of constants. But it is not relevant for quasi-affine representations.

$$\Sigma_{\Omega}$$
 - set of the cardinality $\sum_{\omega \in \Omega} \operatorname{arity}(\omega)$
 $\mathbb{N}\langle \Sigma_{\Omega} \rangle$ - non commutative semiring of polynomials with natural coefficients and with the set of indeterminants Σ_{Ω}

 $F_{SM}(X)$ - semimodule over $\mathbb{N}\langle \Sigma_{\Omega} \rangle$ freely generated by X

Theorem (J. Ježek '79)

Each algebra $\mathbb{A} = (A, \Omega)$ is a subreduct of $F_{SM}(A)/\theta_{\mathbb{A}}$.

 $\theta_{\mathbb{A}}$ - naturally constructed congruence

 $heta_{\mathbb{A}}^+$ - additively cancellative expansion of $heta_{\mathbb{A}}$

 $heta_{\mathbb{A}}^+$ - additively cancellative expansion of $heta_{\mathbb{A}}$

Fact

A is a subreduct of a module iff $\theta_{\mathbb{A}}^+ \cap A^2 = 0_A$.

 $heta_{\mathbb{A}}^+$ - additively cancellative expansion of $heta_{\mathbb{A}}$

Fact

A is a subreduct of a module iff $\theta_{\mathbb{A}}^+ \cap A^2 = 0_A$.

 $\mathbb{T}(X)$ - algebra of terms over X

subreducts of modules

$$heta_{\mathbb{A}}^+$$
 - additively cancellative expansion of $heta_{\mathbb{A}}$

Fact

A is a subreduct of a module iff $\theta_{\mathbb{A}}^+ \cap A^2 = 0_A$.

 $\mathbb{T}(X)$ - algebra of terms over X is a subreduct of the semimodule $F_{SM}(X)$

$$heta_{\mathbb{A}}^+$$
 - additively cancellative expansion of $heta_{\mathbb{A}}$

Fact

A is a subreduct of a module iff $\theta_{\mathbb{A}}^+ \cap A^2 = 0_A$.

 $\mathbb{T}(X)$ - algebra of terms over X is a subreduct of the semimodule $F_{SM}(X)$ and we can add terms

subreducts of modules

$$heta_{\mathbb{A}}^+$$
 - additively cancellative expansion of $heta_{\mathbb{A}}$

Fact

A is a subreduct of a module iff $\theta_{\mathbb{A}}^+ \cap A^2 = 0_A$.

 $\mathbb{T}(X)$ - algebra of terms over X is a subreduct of the semimodule $F_{SM}(X)$ and we can add terms

Q - set of all quasi-identities

$$[t_1 \approx s_1 \wedge \cdots \wedge t_n \approx s_n] \rightarrow t_0 \approx s_0,$$

such that

$$s_0+\cdots+s_n=t_0+\cdots+t_n.$$

subreducts of modules

$$heta_{\mathbb{A}}^+$$
 - additively cancellative expansion of $heta_{\mathbb{A}}$

Fact

A is a subreduct of a module iff $\theta_{\mathbb{A}}^+ \cap A^2 = 0_A$.

 $\mathbb{T}(X)$ - algebra of terms over X is a subreduct of the semimodule $F_{SM}(X)$ and we can add terms

Q - set of all quasi-identities

$$[t_1 \approx s_1 \wedge \cdots \wedge t_n \approx s_n] \rightarrow t_0 \approx s_0,$$

such that

$$s_0+\cdots+s_n=t_0+\cdots+t_n.$$

Theorem (D. Stanovský, M. S.)

\mathbb{A} is a subreduct of a module

subreducts of modules

$$heta_{\mathbb{A}}^+$$
 - additively cancellative expansion of $heta_{\mathbb{A}}$

Fact

A is a subreduct of a module iff $\theta_{\mathbb{A}}^+ \cap A^2 = 0_A$.

 $\mathbb{T}(X)$ - algebra of terms over X is a subreduct of the semimodule $F_{SM}(X)$ and we can add terms

Q - set of all quasi-identities

$$[t_1 \approx s_1 \wedge \cdots \wedge t_n \approx s_n] \rightarrow t_0 \approx s_0,$$

such that

$$s_0+\cdots+s_n=t_0+\cdots+t_n.$$

Theorem (D. Stanovský, M. S.)

 $\mathbb A$ is a subreduct of a module iff it satisfies $\mathbb Q$

subreducts of modules

$$heta_{\mathbb{A}}^+$$
 - additively cancellative expansion of $heta_{\mathbb{A}}$

Fact

A is a subreduct of a module iff $\theta_{\mathbb{A}}^+ \cap A^2 = 0_A$.

 $\mathbb{T}(X)$ - algebra of terms over X is a subreduct of the semimodule $F_{SM}(X)$ and we can add terms

Q - set of all quasi-identities

$$[t_1 \approx s_1 \wedge \cdots \wedge t_n \approx s_n] \rightarrow t_0 \approx s_0,$$

such that

$$s_0+\cdots+s_n=t_0+\cdots+t_n.$$

Theorem (D. Stanovský, M. S.)

 $\mathbb A$ is a subreduct of a module iff it satisfies $\mathbb Q$ iff it is quasi-affine.

Q once more

 $(\omega, 3)$

 $(\sigma, 1)$

х

Q once more

Fact

A quasi-identity $[t_1 \approx s_1 \wedge \cdots \wedge t_n \approx s_n] \rightarrow t_0 \approx s_0$ belongs to Ω iff the following equality of multisets is valid

$$\biguplus_{i=0}^{n} BD(t_{i}) = \biguplus_{i=0}^{n} BD(s_{i}).$$

Corollary

Let A be an algebra. Assume that for each $k \in \mathbb{Z}^+$ there is a binary relation \int of A^k such that

- $\underline{a} \int \sigma \underline{a}$ for each permutation $\sigma \in [k]!$,
- $(\underline{c}, t(\underline{a}, \underline{d}), \underline{e}) \int (\underline{c}', t(\underline{a}, \underline{d}'), \underline{e}') \Leftrightarrow (\underline{c}, t(\underline{b}, \underline{d}), \underline{e}) \int (\underline{c}', t(\underline{b}, \underline{d}'), \underline{e}')$

•
$$(a,\underline{c}) \int (b,\underline{c}) \Rightarrow a = b.$$

Then \mathbb{A} is a subreduct of a module.

Corollary

Let A be an algebra. Assume that for each $k \in \mathbb{Z}^+$ there is a binary relation \int of A^k such that

- $\underline{a} \int \sigma \underline{a}$ for each permutation $\sigma \in [k]!$,
- $(\underline{c}, t(\underline{a}, \underline{d}), \underline{e}) \int (\underline{c}', t(\underline{a}, \underline{d}'), \underline{e}') \Leftrightarrow (\underline{c}, t(\underline{b}, \underline{d}), \underline{e}) \int (\underline{c}', t(\underline{b}, \underline{d}'), \underline{e}')$

•
$$(a,\underline{c}) \int (b,\underline{c}) \Rightarrow a = b.$$

Then \mathbb{A} is a subreduct of a module.

Proof of Kearnes-Szendrei theorem

If \mathbb{A} is abelian and $\mathcal{V}(\mathbb{A})$ satisfies nontrivial IMC, then we may construct \int from the largest congruence of \mathbb{A}^2 such that the diagonal $D_{\mathbb{A}}$ is its class.

Corollary

Let A be an algebra. Assume that for each $k \in \mathbb{Z}^+$ there is a binary relation \int of A^k such that

- $\underline{a} \int \sigma \underline{a}$ for each permutation $\sigma \in [k]!$,
- $(\underline{c}, t(\underline{a}, \underline{d}), \underline{e}) \int (\underline{c}', t(\underline{a}, \underline{d}'), \underline{e}') \Leftrightarrow (\underline{c}, t(\underline{b}, \underline{d}), \underline{e}) \int (\underline{c}', t(\underline{b}, \underline{d}'), \underline{e}')$

•
$$(a,\underline{c}) \int (b,\underline{c}) \Rightarrow a = b.$$

Then \mathbb{A} is a subreduct of a module.

Proof of Kearnes-Szendrei theorem

If \mathbb{A} is abelian and $\mathcal{V}(\mathbb{A})$ satisfies nontrivial IMC, then we may construct \int from the largest congruence of \mathbb{A}^2 such that the diagonal $D_{\mathbb{A}}$ is its class.

This is the end

Corollary

Let A be an algebra. Assume that for each $k \in \mathbb{Z}^+$ there is a binary relation \int of A^k such that

- $\underline{a} \int \sigma \underline{a}$ for each permutation $\sigma \in [k]!$,
- $(\underline{c}, t(\underline{a}, \underline{d}), \underline{e}) \int (\underline{c}', t(\underline{a}, \underline{d}'), \underline{e}') \Leftrightarrow (\underline{c}, t(\underline{b}, \underline{d}), \underline{e}) \int (\underline{c}', t(\underline{b}, \underline{d}'), \underline{e}')$

•
$$(a,\underline{c}) \int (b,\underline{c}) \Rightarrow a = b.$$

Then \mathbb{A} is a subreduct of a module.

Proof of Kearnes-Szendrei theorem

If \mathbb{A} is abelian and $\mathcal{V}(\mathbb{A})$ satisfies nontrivial IMC, then we may construct \int from the largest congruence of \mathbb{A}^2 such that the diagonal $D_{\mathbb{A}}$ is its class.

This is the end Thank you :-)